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Abstract
In this paper we propose the Hamiltonians of the generalized SUq(1|2)Gaudin
model corresponding to the periodic generalized t–J model. With the help
of the well defined graded quantum determinant, we obtain the eigenstate and
eigenvalues of the generating function and the Hamiltonians of the Gaudin
model in the fermionic background in the framework of the graded quantum
inverse scattering method. The Bethe ansatz equations are also obtained.

PACS numbers: 0220, 0230, 0520, 7510H

1. Introduction

The Gaudin model associated with the SU(2)Lie algebra was first constructed by Gaudin [1–3]
in 1973. By using the off-shell Bethe ansatz method, Babujian and Flume [4] generalized it
into the general Lie algebra g case, and constructed the corresponding Hamiltonian without
the solution. In principle, one can apply Gaudin’s method to find the solution, however, this
is highly tedious. In order to solve this problem, Feigin et al [5] proposed a new method
and obtained the solution and the Bethe ansatz equations. The Gaudin-like system is a new
kind of integrable quantum model with long-range interaction and admits a classical r-matrix
structure. So, we can simply consider the Gaudin model as a proper limit of some integrable
quantum chains in the framework of the quantum inverse scattering method (QISM) [6, 7].
Sklyanin [8] suggested that the spectrum and eigenfunctions of the spin- 1

2 Gaudin models with
rational and trigonometric interaction could be derived from XXX and XXZ chains. Then,
in [9–11], Sklyanin and Takebe obtained the arbitrary-spin XYZ Gaudin model as a quasi-
classical limit of the inhomogeneous higher-spin generalization of the XYZ model. In their
method, the quantum determinant has played a very important role.

There is a belief that strongly correlated electron systems are important in studying high-
temperature superconductivity [12, 13]. An appropriate model is the t–J model suggested
by Anderson et al [14, 15]. The Hamiltonian includes the nearest-neighbour hopping (t) and
anti-ferromagnetic exchange (J ). In one dimension, a generalized t–J model reads [16]

H = −t
N−1∑
j=1

∑
σ

(C
†
jσCj+1σ + C†

j+1σCjσ )
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−J
N−1∑
j=1

[Sxj S
x
j+1 + Syj S

y

j+1 + cos(η)(SzjS
z
j+1 − 1

4njnj+1)]

−t cos(η)
N∑
j=1

nj + it sin(η)(n1 − nN)

−it sin(η)
N−1∑
j=1

(njS
z
j+1 − Szjnj+1) (1)

whereC†
jσ (Cjσ ) is the creation (annihilation) operator with spin σ = ↑ or ↓ on the j th side, nj

is the number of the electron and �Sj is the spin- 1
2 operator. The Fock space is spanned by three

kinds of vector, |0〉j , |↑〉j and |↓〉j representing hole, spin-up and spin-down states respectively,
C

†
j,↑|0〉j = |↑〉j , C†

j,↓|0〉j = |↓〉j and Cj,σ |0〉j = 0. The total vacuum can be represented by∏⊗N
j=1 |0〉j . η is an anisotropic parameter. It is shown that under the proper condition J = 2t

the model has a new symmetry—super-symmetric SUq(1|2), a graded deformed group. When
J = 2t and η = 0, the model reduces to the usual super-symmetric t–J model.

Essler and Korepin [17] show that the one-dimensional t–J model can be obtained from
the transfer matrix of the two-dimensional super-symmetric exactly solvable lattice model.
Using the graded QISM [18, 19], they obtain the eigenvalue and eigenstate for the super-
symmetric t–J model with periodic boundary conditions in three different backgrounds. The
Hamiltonian (1) with periodic boundary was studied by Yue and Qiu [20].

In this paper, we apply Sklyanin’s method [8] to a more complicated graded case and
obtain the Hamiltonians of the generalized SUq(1|2) Gaudin model with periodic boundary
conditions. Starting from the graded monodromy matrix, we define the graded quantum
determinant which commutes with the monodromy matrix. Then, we take the quasi-classical
limit (η → 0) of both the quantum determinant and the monodromy matrix of the SUq(1|2)
t–J model and obtain the Hamiltonians of the generalized SUq(1|2) Gaudin model. Finally,
using the graded QISM, we obtain the eigenstate and the eigenvalues of the generating function
and the Hamiltonians of the generalized SUq(1|2) Gaudin model. It is necessary to point out
that the quasi-classical limit procedure is quite subtle. One should be careful to obtain required
quantities under such a limit, especially the Hamiltonians and the eigenstate.

This paper is organized as follows. Section 2 gives a description of the generalized t–J
model. In section 3, we show how to construct the generalized SUq(1|2) Gaudin model in
detail. The Hamiltonians and the generating function are explicitly obtained. By using the
graded QISM method, we also find the eigenstate and eigenvalues. Section 4 includes a brief
summary and some discussion.

2. The generalized t–J model

We first review briefly some facts on the generalized t–J model and the graded version of the
QISM. Under the convention ε1 = ε2 = 1 and ε3 = 0, the R-matrix is

R̂ =
3∑
i=1

sinh(η + (−1)εi u)Eii ⊗ Eii +
3∑

i �=j=1

sinh(η)eγij uEii ⊗ Ejj

+
3∑

i �=j=1

sinh(u)(−1)εiεjEij ⊗ Eji (2)
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where Eij is defined as (Eij )kl = δikδjl and

γij =
{

1 i < j

−1 i > j .

The L-operators, Ln(u), are constructed from the R-matrix as

Ln(u) = sinh u− [sinh u− sinh(η − u)][E11
n + E22

n ]

−[sinh u− sinh(η + u)]E33
n +

3∑
i �=k=1

(−1)εiεkeγiku sinh uEikn (3)

where Eabn are quantum operators acting in the nth quantum space with (Eabn )αβ = δaαδbβ .
It is well known that the L-operators satisfy the graded Yang–Baxter relation (YBR) [21–

23]

R̂12(u− v)Ln(u)⊗ Ln(v) = Ln(v)⊗ Ln(u)R̂12(u− v) (4)

with the tensor product (F ⊗ G)bdac = FabGcd(−1)εc(εa+εb). The N site monodromy matrix
T (u) with the shift of spectral parameters δm is defined as the product of the L-operators on
all sites

T (u) = LN(u− δN)LN−1(u− δN−1) · · ·L1(u− δ1) (5)

and satisfies the graded YBR

R̂(u− v)T (u)⊗ T (v) = T (v)⊗ T (u)R̂(u− v). (6)

As a consequence of the graded YBR, the transfer matrices, t (u) = strT (u), commute with
each other for different spectrum parameters, [t (u), t (v)] = 0, which ensures the integrability
of the system.

In the graded case, the quantum determinant is defined as

0(u) ≡ str123P
−
123T01(u)T02(u− η)T03(u− 2η) [0(u), T (v)] = 0 (7)

where P−
123 is a completely anti-symmetric projector

P−
123 = 1

6 [1 − P12 − P13 − P23 + P123 + P132] (8)

with [P12]b1b2
a1a2

= δa1b2δa2b1(−1)εa1 εa2 .
We introduce the local reference state (boson background) |2〉n = (0, 0, 1)tn and the whole

reference state |2〉 = |2〉1 ⊗ |2〉2 · · · |2〉N . The monodromy matrix acting on the reference
state gives

T (u)
j

i |2〉 = 0 i �= j < 3 T (u)i3|2〉 �= 0 i = 1, 2
T (u)11|2〉 = |2〉 T (u)22|2〉 = |2〉

T (u)33|2〉 =
N∏
n=1

sinh(u− δn + η)

sinh(u− δn) |2〉.
(9)

In the next section, the eigenvalue of the quantum determinant is a key in determining
the eigenvalue of the Gaudin model. The rest of this section will be dedicated to this goal.
Expressing 0(u), one may have such terms as T li T

i
j T

j

l . Using the graded YBR (6), one may
arrange them in a standard order. However, this is very tedious at operator level. Fortunately,
what we need is just the value of the quantum determinant acting on the reference state |2〉.
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On this state, the calculation becomes much simpler but still has many terms. Hence, we only
give a few formulae as examples (they are invalid as the operator formula):

T (u)3aT (u− η)a3|2〉 = − e2η

2 cosh η
T (u)33T (u− η)aa|2〉 +

e2η

2 cosh η
T (u)aaT (u− η)33|2〉 (10)

T (u)3aT (u− η)bbT (u− 2η)a3|2〉 = −e2ηT (u)33T (u− η)bbT (u− 2η)aa|2〉
+e2ηT (u)aaT (u− η)33T (u− 2η)bb|2〉 a = 1, 2 b = a, 3 (11)

T (u)3aT (u− η)bbT (u− 2η)a3|2〉 = − e2η

2 cosh u
T (u)33T (u− η)bbT (u− 2η)aa|2〉

+
e2η

2 cosh u
T (u)aaT (u− η)bbT (u− 2η)33|2〉

a = 1 b = 2 or a = 2 b = 1 (12)

T (u)31T (u− η)12T (u− 2η)23|2〉

=
{

e3η

2 cosh u
T (u)33T (u− η)22T (u− 2η)11 + e2ηT (u)11T (u− η)33T (u− 2η)22

−e2ηT (u)33T (u− η)11T (u− 2η)22

− e3η

2 cosh u
T (u)11T (u− η)22T (u− 2η)33

}
|2〉. (13)

So, the eigenvalue of the quantum determinant can be written as

0|2〉 =
{

−4 +

(
1 − eη − e2η

6 cosh η
+

e3η

6 cosh η

) N∏
n=1

sinh(u− δn − η)
sinh(u− δn − 2η)

+ (1 − e2η)

N∏
n=1

sinh(u− δn)
sinh(u− δn − η)

+

(
1 + eη + e2η +

e2η

6 cosh η
− e3η

6 cosh η

) N∏
n=1

sinh(u− δn + η)

sinh(u− δn)

}
|2〉

=
{

−1 + 3η
N∑
n=1

coth(u− δn) +
3N

2
η2

+ 3η2
N−1∑
n=1

N∑
m=n+1

coth(u− δn) coth(u− δm) + o(η3)

}
|2〉. (14)

3. The generalized SUq(1|2) Gaudin model

The Gaudin magnet introduced in [2] was given by taking the quasi-classical limit η → 0 of
the transfer matrix tr T (u) for the inhomogeneous spin chain [24]. This fact indicates that the
Hamiltonian is written in terms of the solution of the classical YBR. This motivates us to define
the generalized SUq(1|2) Gaudin model through the quasi-classical limit of the generalized
t–J model. Our strategy is to consider the quasi-classical limit of the proper quantities in
the generalized t–J model, such as the graded quantum determinant and the transfer matrix.
Then, we can obtain the Hamiltonians and the generating function of the Gaudin model. For
convenience, we change the braided R-matrix R̂ to the non-braided R-matrix R = P12R̂.

Let us examine first the asymptotic behaviour of the operators in the previous section
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when η tends to 0. The R-matrix, the L-operator and the monodromy matrix are expanded as

R12(u) = 1 + ηr12(u) Ln(u) = 1 + ηLn(u)

T (u) = 1 + ηT (u) + η2T2(u) + O(η3) T (u) =
N∑
n=1

Ln(u− δn) (15)

with

Ln(u) = 1

sinh u


 − cosh uE11

n −euE21
n euE31

n

−e−uE12
n − cosh uE22

n euE32
n

e−uE13
n e−uE23

n cosh uE33
n




r12(u) =
3∑
i=1

(−1)εi
cosh u

sinh u
Eii ⊗ Eii +

3∑
i �=j=1

eγij u(−1)εiεjEij ⊗ Eji .

L(u) and T (u) satisfy the classical YBR

[L01(u1),L02(u2)] = [L01(u1) + L02(u2), r12(u1 − u2)]

[T01(u1), T02(u2)] = [T01(u1) + T02(u2), r12(u1 − u2)]
(16)

where L01(u) = Ln(u)⊗ I , L02(u) = I ⊗Ln(u), T01(u) = T (u)⊗ I and T02(u) = I ⊗ T (u).
Similarly, we expand the transfer matrix to order η2

t (u) = −1 + ηstrT (u) + η2strT2(u) + o(η3) (17)

and the quantum determinant (7) would be

0(u) = −1 + 3ηstrT (u) + η2[ 3
2 strT 2(u)− 3

2 (strT (u))2 + 3strT (2)(u)− 3strT (1)(u)] + o(η3)

(18)

where T (1)(u)means the first-order deviation of T (u) and the super-trace of T (u) and T (1)(u)

is

strT (u) =
N∑
n=1

cosh(u− δn)
sinh(u− δn) strT (1)(u) =

N∑
n=1

1

sinh2(u− δn)
. (19)

Now, we are ready to define the generating function of the Gaudin model at hand. The
generalized SUq(1|2) Gaudin model is defined by

τ̂ (u) = 3

2
strT 2(u) = 3

2

N∑
n=1

2 + cosh2(u− δn)
sinh2(u− δn)

+
N∑
n=1

Ĥn

tanh(u− δn) . (20)

In the second identity, we have used the definition of T (u) in (15), and the N independent
commutative Hamiltonians are

Ĥn =
N∑

m=1,m �=n

3∑
α1,α2=1

2(−1)α2Eα1α2
n Eα2α1

m

tanh(δn − δm)
N∑
n=1

Ĥn = 0. (21)

Based on the identities (17) and (18), we can express the generating function τ̂ (u) in terms of
t (u) and 0(u)

3
2 strT 2(u) = (η)−2 {0(u)− 3t (u)− 2} + (η)2

{
3
2 (strT (u))2 + 3strT (1)(u)

}
. (22)

This means that τ̂ (u) constitutes a commutative family, i.e. [τ̂ (u), τ̂ (v)] = 0. There are two
ways to show this. One is to use the classical YBR (16). Another way is based on the fact that
the quantum determinant is the centre of the algebra and [t (u), t (v)] = 0. Thus, the Gaudin
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model defined above is integrable. Using the Jordan–Wigner transformation, the Hamiltonians
can be expressed in terms of the fermionic creation and annihilation operators

Ĥn =
N∑

m=1,m �=n

∑
σ=↑,↓

3

tanh(δn − δm)
{
(C†
n,σCm,σ + C†

m,σCn,σ ) + 1 − nn − nm

−2S+
nS

−
m − 2S−

n S
+
m − 2SznS

z
m + 1

2nnnm
}

(23)

where

C
†
n,↑ = E13

n e−iπ
∑n−1
l=1 nn↑ Cn,↑ = eiπ

∑n−1
l=1 nn↑E31

n

C
†
n,↓ = E23

n e−iπ
∑n−1
l=1 nn↓e−iπ

∑L
k=1 nk↓ Cn,↓ = eiπ

∑L
k=1 nk↓eiπ

∑n−1
l=1 nn↓E32

n

S+
n = 1√

2
C

†
n,↑Cn,↓ S−

n = 1√
2
C

†
n,↓Cn,↑ Szj = 1

2 (C
†
n,↑Cn,↑ − C†

n,↓Cn,↓)

(24)

and L is the length of the lattice.
We assume the eigenstate of τ̂ (u) to be of the form

63 =
2∑

α1α2···αm
Cα1(λ1)Cα2(λ2) · · · Cαm(λm)|2〉Fαm···α2α1 (25)

where the number of αj taking the value of unity ism1 and the coefficientsFαm···α2α1 are related
to the following states:

|λ(1)1 , λ
(1)
2 , . . . , λ

(1)
m1

〉 = C(1)(λ(1)1 )C(1)(λ(1)2 ) · · · C(1)(λ(1)m1
)|ω〉. (26)

The state |λ(1)1 , λ
(1)
2 , . . . , λ

(1)
m1

〉 ‘lives’ on a lattice of m sites and is thus an element of a direct

product over m Hilbert spaces. In components it reads |λ(1)1 , λ
(1)
2 , . . . , λ

(1)
m1

〉αm···α2α1 and can be
directly identified with Fαm···α2α1 . The operators Cαl (λl) and C(1)(λ1) are

Cαl (λl) =
N∑
n=1

e−(λl−δn)

sinh(λl − δn)E
αl3
n C(1)(λ(1)j ) =

m∑
n=1

e−(λ(1)j −λn)

sinh(λ(1)j − λn)
e12
n (27)

where e12
n are the quantum operators of the auxiliary L-matrix in the second row and first

column. We also have |ω〉n = (0, 1)tn and |ω〉 = |ω〉1 ⊗ |ω〉2 · · · |ω〉m. It is worth pointing
out that the operators Cαl (λ) are the entries of the monodromy matrix T (λ) in the third row
and αl th column, while the operator C(1)(u) is the entry of an auxiliary monodromy matrix
(six-vertex) in the second row and first column. This auxiliary monodromy matrix acts on
the αl configuration (spin configuration) in the first step of the Bethe ansatz method. The
quantities m and m1 can also be identified as the total number of electrons and the number of
spin-up electrons respectively, i.e. m = Ne = N↑ + N↓ and m1 = N↑. Thus, by using the
graded QISM, the eigenstate of the generalized SUq(1|2) Gaudin model is

|λ1, λ2, . . . , λm|F 〉 =
m∏
j=1

N∑
n=1

e−(λl−δn)

sinh(λj − δm)E
αj3
n |2〉

m1∏
k=1

m∑
n=1

e−(λ(1)k −λn)

sinh(λ(1)k − λn)
e12
n |ω〉 (28)

if the following Bethe ansatz equations are valid:

N∑
n=1

coth(λk − δn) =
m1∑
j=1

coth(λk − λ(1)j ) (29)

m∑
i=1

coth(λi − λ(1)l ) = 2
m1∑

j=1,j �=l
coth(λ(1)j − λ(1)l ). (30)
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The transfer matrix t (u) acting on the eigenstate gives the eigenvalue

:t(u) = −1 + η
N∑
n=1

coth(u− δn) + η2

{
N

2
−m1 +

N−1∑
n=1

N∑
l=n+1

coth(u− δn) coth(u− δl)

−2
m1−1∑
k=1

m1∑
p=k+1

coth(λ(1)k − u) coth(λ(1)p − u)

+
N∑
n=1

coth(u− δn)
m∑
j=1

coth(λj − u)

−
m1∑
k=1

coth(u− λ(1)k )
m∑
j=1

coth(λj − u)
}

+ o(η3). (31)

Thanks to equations (14), (22) and (31), the eigenvalue of the generating function of the
generalized SUq(1|2) Gaudin model is

:τ̂(u) = 3m1 + 6
m1−1∑
k=1

m1∑
p=k+1

coth(λ(1)k − u) coth(λ(1)p − u)

−3
N∑
n=1

coth(u− δn)
m∑
j=1

coth(λj − u)

+3
m1∑
k=1

coth(u− λ(1)k )
m∑
j=1

coth(λj − u)

+
3

2

( N∑
n=1

coth(u− δn)
)2

+ 3
N∑
n=1

1

sinh2(u− δn)
. (32)

Considering the residues of :τ̂(u) at u = δn and using the Bethe ansatz equations (29)
and (30), we finally obtain the eigenvalues of the Hamiltonians Ĥn:

:Ĥn =
N∑

m=1,m �=n
3 coth(δn − δm)−

m∑
j=1

3 coth(λj − δn) n = 1, 2, . . . , N. (33)

4. Discussion

We construct the Hamiltonians of the generalized SUq(1|2)Gaudin model based on the graded
quantum determinant in the graded case. Meanwhile we give the eigenstate and the eigenvalues
of the Hamiltonians and the generating functions of the generalized SUq(1|2) Gaudin model.

In this paper, all discussions are based on periodic boundary conditions. It is also
interesting to study the boundary behaviour of the quantum integrable model in many kinds of
boundary condition, so one can study the Gaudin model in open boundary conditions. In that
case, one may not use the quantum determinant. We will give these results in future papers.
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